Le Répertoire National des Certifications Professionnelles (RNCP)

Résumé descriptif de la certification Code RNCP: 30588

Intitulé

MASTER: MASTER Mention Ingénierie des Systèmes Complexes

AUTORITÉ RESPONSABLE DE LA CERTIFICATION	QUALITÉ DU(ES) SIGNATAIRE(S) DE LA CERTIFICATION
	Président de l'Université Paris-Saclay, Recteur de l'Académie
	de Versailles

Niveau et/ou domaine d'activité

I (Nomenclature de 1969)

7 (Nomenclature Europe)

Convention(s):

Code(s) NSF:

200 Technologies industrielles fondamentales, 201 Technologies de commandes des transformations industrielles, 326 Informatique, traitement de l'information, réseaux de transmission

Formacode(s):

Résumé du référentiel d'emploi ou éléments de compétence acquis

Le master Ingénierie des Systèmes Complexes a pour objectifs d'appréhender la modélisation, la conception et le management de systèmes produits, processus et organisations (notamment industrielles), en recourant largement aux sciences de la modélisation, à l'ingénierie système et aux sciences des systèmes, au génie industriel.

le titulaire du diplôme est un professionnel, qui :

- étudie la faisabilité d'un projet et élabore des propositions techniques, technologiques
- définit les méthodes, les moyens d'études et de conception et leur mise en oeuvre
- élabore et fait évoluer les dossiers techniques de définition du projet
- conçoit des solutions, des évolutions techniques, technologiques et étudier les caractéristiques et contraintes du projet.

Compétences professionnelles:

Selon les spécialités des parcours, le diplômé doit être capable, entre autres, de :

- Utiliser les outils algorithmiques et méthodologiques adaptés à l'élaboration de modèles de connaissance et réaliser la synthèse de modèles de comportement de classes de systèmes complexes.
 - Exploiter un grand nombre de composants et d'interactions non-linéaires et hiérarchiser les facteurs importants de phénomènes.
- Exploiter les approches cognitives fondées sur l'apprentissage, en vue d'améliorer la connaissance qu'a le système complexe de son environnement et de ses possibles actions.
 - Doter un système complexe de propriétés d'adaptation.
- Trouver les moyens d'augmenter ses capacités d'évolution, d'autonomie et de communication (facilité de programmation, communication transparente et fiable avec les autres composantes de l'environnement, autoorganisation)
- Analyser, vérifier et valider les comportements de systèmes complexes, notamment dans des domaines d'application critiques (médical, avionique, véhicules)
- Effectuer des simulations, procéder à une vérification fonctionnelle dans différents environnements de test et détecter les erreurs propres aux différentes étapes du développement.
 - Innover dans la conception et le développement de systèmes complexes.
- Réaliser des études et des applications en électronique et génie informatique, automatisme et régulation, métrologie, suivi énergétique ou médecine, biométrie et sécurité.
 - Concevoir des architectures de systèmes et/ou de réseau vdi pour superviser des équipements.
 - Exploiter les fonctionnalités des stic pour réorganiser des processus industriels ou informatiques existants.
- Piloter une équipe-projet ou une équipe-exécution dans les domaines de l'informatique industrielle, l'électronique numérique, les systèmes embarqués, systèmes de sécurités.
 - Concevoir et mettre en service des systèmes communicants de contrôle.
 - Sécuriser des systèmes informatiques par redondance.
 - Organiser des « workflow ».
 - Analyser et optimiser des process industriels.
 - Proposer et mener des projets de recherche fondamentale et technologique dans le domaine des systèmes complexes.
 - Mettre en place une modélisation conceptuelle.

Compétences transversales et linguistiques :

- Expression en anglais et dans le langage scientifique du domaine
- Maitrise des supports de communication (écrits et oraux)
- Sens de l'organisation, de la rigueur et de la méthode
- Réaliser des synthèses des résultats sous forme de rapports écrits.
- Capacité à convaincre et à défendre un projet
- Capacité d'interagir avec des publics de compétences variées.

Secteurs d'activité ou types d'emplois accessibles par le détenteur de ce diplôme, ce titre ou ce certificat

- Grands organismes de recherche (CNRS, INRIA, CEA, INSERM, etc.)
- Industries informatiques et des télécommunications (services, infrastructures, opérateurs)
- Technologies pour la santé (information, confort, assistance aux personnes dépendantes)
- Industries manufacturières et militaires de défense (machines industrielles, robots de service, systèmes de télécommunication, dispositifs embarqués intelligents,...)
 - Transport (routier, ferroviaire, aérien, naval, aérospatial, ...)
 - Energie (nucléaire, solaire, pétrolière, eaux, renouvelable, ...)
 - Industries informatiques et des télécommunications (services, infrastructures, opérateurs)
 - Technologies pour la santé (information, confort, assistance aux personnes dépendantes)
 - Travaux publics
 - Ingénieur NTIC
 - Ingénieur R&D
 - Ingénieur en organisation de la production
 - Chef de projet R&D spécialisé en ingénierie des systèmes complexes, des systèmes cyber-physiques et des systèmes de systèmes.
 - Chef de projet industriel
 - Chef de projet affaires
 - Créateur d'entreprise d'incubateurs et de pépinières d'entreprises innovantes
 - Cadre
 - Consutant et analyste de risques
 - Directeur du système d'information
 - Expert technologie en industrie
 - Responsable qualité

Codes des fiches ROME les plus proches :

 $\underline{\text{H1206}}$: Management et ingénierie études, recherche et développement industriel

H1302: Management et ingénierie Hygiène Sécurité Environnement -HSE- industriels

<u>I1102</u> : Management et ingénierie de maintenance industrielle

M1802 : Expertise et support en systèmes d'information

M1805 : Études et développement informatique

Réglementation d'activités :

Sans objet

Modalités d'accès à cette certification

Descriptif des composantes de la certification :

Cette mention comprend 2 voies de M1 et 9 parcours de M2 (dont 4 peuvent être suivis en alternance)

- M2 Conception des Systèmes Cyber-Physiques
- M2 Conception et Commande des Systèmes Critiques
- M2 Industries Numériques (avec ou sans apprentissage)
- M2 Ingénierie de la Conception
- M2 Ingénierie Numérique Produit Process
- M2 Optimisation des Systèmes Industriels et Logistiques
- M2 Organisation et Pilotage de la Maintenance Aéronautique (avec ou sans apprentissage)
- M2 Organisation et Pilotage des Systèmes Logistiques (avec ou sans apprentissage)
- M2 Réseaux et Systèmes d'Information pour la Santé (avec ou sans apprentissage)

Tous les détails des unités d'enseignement sont développés sur :

https://www.universite-paris-saclay.fr/fr/formation/master/ingenierie-des-systemes-complexes#mention

Validité des composantes acquises : illimitée

CONDITIONS D'INSCRIPTION À LA CERTIFICATION	OUINON	COMPOSITION DES JURYS
Après un parcours de formation sous statut d'élève ou d'étudiant	X	Le jury est composé d'enseignants de l'équipe pédagogique et de professionnels
En contrat d'apprentissage	X	Le jury est composé d'enseignants de l'équipe pédagogique et de professionnels
Après un parcours de formation continue	X	Le jury est composé d'enseignants de l'équipe pédagogique et de professionnels
En contrat de professionnalisation	X	Le jury est composé d'enseignants de l'équipe pédagogique et de professionnels
Par candidature individuelle	X	Possible pour partie du diplôme par VES ou VAP

Par expérience dispositif VAE	Х	Le jury est composé d'enseignants de l'équipe
		pédagogique et de professionnels

	OUI	NON
Accessible en Nouvelle Calédonie		Х
Accessible en Polynésie Française		Х

cessible en nouvelle caledonie		
cessible en Polynésie Française	Х	

ACCORDS EUROPÉENS OU INTERNATIONAUX

Base légale

Référence du décret général :

Référence arrêté création (ou date 1er arrêté enregistrement) :

LIENS AVEC D'AUTRES CERTIFICATIONS

Arrêté du 10 juillet 2015 accréditant la Communauté d'universités et établissements Université Paris-Saclay en vue de la délivrance de diplômes nationaux

Référence du décret et/ou arrêté VAE :

Références autres :

Pour plus d'informations

Statistiques:

Autres sources d'information :

https://www.universite-paris-saclay.fr/fr/formation/master/ingenierie-des-systemes-complexes#mention

<u>Uiversité Paris-Saclay</u>

Lieu(x) de certification :

Université Paris-Saclay : Île-de-France - Essonne (91) [Saint Aubin]

Université Paris-Saclay Route de l'Orme aux Merisiers - RD 128 - 91190 Saint-Aubin

Lieu(x) de préparation à la certification déclarés par l'organisme certificateur :

- CentraleSupélec
- ENS Paris-Saclay
- Université d'Évry-Val-d'Essonne
- ENSTA
- Polytechnique
- Université Versailles-Saint-Quentin-en-Yvelines
- Université Paris-Sud

Historique de la certification :